admin管理员组

文章数量:866648

本发明描述一种具有超宽带雷达的项圈。外壳含有传感器电子器件(101),且发射天线(104)和接收天线(105)被定位成围绕所述项圈的周界而与所述外壳分开。所述项圈的第一实例包含第一发射天线和第一接收天线。所述项圈的第二实例添加第二发射天线和第二接收天线。

1.一种项圈,包括:外壳,含有控制超宽带雷达信号的产生和所得信号的接收的处理器,所述外壳位于所述项圈上的第一周向位置处;发射天线,与所述外壳分开,所述发射天线被配置成输出所述超宽带雷达信号;以及接收天线,与所述外壳分开,所述接收天线被配置成接收所述所得信号,其中所述发射天线位于所述项圈上的第二周向位置处,所述第二周向位置不同于所述第一周向位置。 2.根据权利要求1所述的项圈,进一步包括第二外壳,其中含有所述处理器的所述外壳是第一外壳,且其中所述发射天线和所述接收天线两者都位于所述第二外壳中。 3.根据权利要求1所述的项圈,其中所述接收天线位于所述项圈上的第三周向位置处,所述第三周向位置不同于所述第一周向位置和所述第二周向位置中的每一者。 4.根据权利要求1所述的项圈,进一步包括位于所述项圈上的第三周向位置处的配重,所述第三周向位置不同于所述第一周向位置和所述第二周向位置。 5.根据权利要求1所述的项圈,进一步包括位于所述项圈上的第三周向位置处的张紧器,所述第三周向位置不同于所述第一周向位置和所述第二周向位置。 6.根据权利要求1所述的项圈,其中所述发射天线是第一发射天线,其中所述接收天线是第一接收天线,且其中所述项圈进一步包括:第二发射天线;以及第二接收天线。 7.根据权利要求6所述的项圈,其中所述第一发射天线在周向上比所述第一接收天线接近所述外壳,且其中所述第二发射天线在周向上比所述第二接收天线接近所述外壳。 8.根据权利要求6所述的项圈,其中所述第一发射天线在周向上比所述第一接收天线接近所述外壳,且其中所述第二接收天线在周向上比所述第二发射天线接近所述外壳。 9.根据权利要求6所述的项圈,其中,当所述第一发射天线输出所述超宽带信号时,所述第一接收天线接收所述所得信号。 10.根据权利要求6所述的项圈,其中,当所述第一发射天线输出所述超宽带信号时,所述第二接收天线接收所述所得信号。 11.根据权利要求6所述的项圈,其中,当所述第一发射天线输出所述超宽带信号时,所述第一接收天线和所述第二接收天线接收所得信号。 12.根据权利要求6所述的项圈,其中,当所述第一发射天线和所述第二发射天线输出所述超宽带信号时,所述第一接收天线接收所得信号。 13.根据权利要求1所述的项圈,其中从所述发射天线输出的所述所输出的超宽带信号被配置成照明颈动脉和颈静脉中的至少一者,且其中所述所得信号含有与所述颈动脉和所述颈静脉中的所述至少一者的位置和运动相关的信息。 14.根据权利要求1所述的项圈,其中从所述发射天线输出的所述所输出的超宽带信号被配置成照明紧接于气管和食管中的至少一者的肌肉,且其中所述所得信号含有与紧接于所述气管和所述食管中的至少一者的所述肌肉的位置和运动相关的信息。 15.一种项圈,包括:外壳,含有控制超宽带雷达信号的产生和所得信号的接收的处理器,所述外壳位于所述项圈上的第一周向位置处;发射天线,所述发射天线被配置成输出所述超宽带雷达信号;接收天线,所述接收天线被配置成接收所述所得信号;其中所述发射天线和所述接收天线位于所述外壳中。 16.根据权利要求15所述的项圈,其中所述发射天线是第一发射天线,其中所述接收天线是第一接收天线,且其中所述项圈进一步包括:第二发射天线;以及第二接收天线,且其中所述第二发射天线和所述第二接收天线位于与所述第一周向位置分开的第二周向位置处。 17.根据权利要求15所述的项圈,其中从所述发射天线输出的所述所输出的超宽带信号被配置成照明颈动脉和颈静脉中的至少一者,且其中所述所得信号含有与所述颈动脉和所述颈静脉中的所述至少一者的位置和运动相关的信息。 18.根据权利要求15所述的项圈,其中从所述发射天线输出的所述所输出的超宽带信号被配置成照明紧接于气管和食管中的至少一者的肌肉,且其中所述所得信号含有与紧接于所述气管和所述食管中的至少一者的所述肌肉的位置和运动相关的信息。

相关申请信息

本申请主张2013年11月21日申请的第14/086,721号美国申请的优先权,第14/ 086,721号美国申请主张2012年11月21日申请的第61/729,298号美国申请的优先权,所述 两个美国申请的内容以引用方式明确地并入本文中。

技术领域

本公开的方面涉及使用雷达来监测哺乳动物的生理条件。

背景技术

动物(比如人类)可能会受伤或患病,从而负面地影响它们的健康。通过生理过程 的定期监测或事件驱动的不定期监测来及时地检测健康改变可实现兽医干预,从而潜在地 减小不利条件的影响,改进生活质量且延长寿命。明确地说,心脏和呼吸监测提供关于动物 健康的有用信息,且这些类型的信息通常用于对动物进行诊断、治疗和管理。

动物可代表大量金融的且通常是感情的投资。健康监测可帮助优化兽医护理以保 护此投资且使物主安心。监测适用于广泛范围的动物,包含食用家畜、种用家畜、外来/濒危 物种、动物运动员、表演动物和家庭宠物。无论动物在野外、被圈养(例如,在动物园)、在牧 场或被散养、在畜棚或马厩、在家里或在院子里还是在畜栏或笼子里,都可实现监测。

动物健康监测具有挑战性。许多熟悉的传感器技术(例如,ECG、脉搏血氧饱和度、 超声和温度)需要直接皮肤接触,从而使得它们不适用于具有皮毛的动物。这些技术可还要 求传感器定位在身体上的特定位置上,这再次可能是不适用的。举例来说,假设预先移除了 皮毛,则脉搏血氧饱和度传感器通常需要放置在薄解剖结构(例如,耳朵)上,从而使得它们 容易因刮擦、摩擦或摇动而丢失。类似地,ECG传感器通常接近心脏和艾因托文氏三角形而 放置在躯干上,从而使得它们容易因刮擦、摩擦或摇动而丢失。最终,不存在能够提供直接、 不显眼的呼吸测量(其为在理解和管理动物健康方面的所需度量)的当前可用的传感器。

呼吸监测当前在兽医护理中被低估,且国内仅少数研究员研究/讲授动物肺脏学。 这种到兽医学中的整合的缺乏与数十年前关于呼吸系统症状在动物心脏和呼吸疾病的诊 断和治疗中的作用的公开信息的主体形成对比。将呼吸监测整合到兽医实践中的障碍之一 是缺乏适当的非侵入式传感器。大多数兽医被迫使依赖于人工观测(观察动物)来获得呼吸 数据。这些观测的使用有限,且因去看兽医而变复杂,这是因为去看兽医通常会导致动物焦 虑以及提高的心肺功能,其不能代表动物的实际基本健康。呼吸监测由于难以获得准确数 据而未被视为重要参数。

动物的自然环境(例如,针对宠物是在家中,或针对马或牛是在牧场)中的呼吸监 测对于兽医学来说将是有益的,这是因为所述数据较能代表动物的实际健康状态。此数据 可用于帮助治疗具有已知医学问题的动物以及鉴定可能正出现医学问题的动物。存在显现 出呼吸系统症状的许多医疗问题,包含心脏病、心脏杂音、肺水肿、肺纤维化、睡眠呼吸暂 停、COPD、哮喘、喉麻痹、犬窝咳(波氏杆菌)以及其它。具体对于家庭宠物来说,呼吸监测对 于短头型犬(具有短鼻腔的品种,例如,斗牛犬、骑士犬、八哥犬、波士顿梗、拳师犬、北京犬、 西施犬等)将是重要的。这些品种具有高呼吸系统问题发生率,且“喘气”效率低下,从而导 致呼吸道发炎和喉部问题且更容易发生中暑。呼吸窘迫的及时鉴定将实现较早且较不复 杂/昂贵的干预且为动物降低风险。

如上文所论述,许多医学监测技术不适用或不可用于动物。多普勒雷达方法,无论 是CW还是脉冲式,都已被作为用于收集心肺数据的技术来研究。这些多普勒雷达方法通常 依赖于体外或非接触式监测,其中多普勒雷达传感器以气隙而与实验对象分开,且因此,不 与患者直接接触。由于主要传播介质(空气,其中εr=1)与活体组织(εr≈50)的相对介电性 质之间的大差异,大多数RF能量在皮肤表面处反射,且极少能量传播到身体的内部中以检 查内脏器官。传播到躯干中且随后被内脏器官反射的任何能量因内部组织吸收以及跨越皮 肤-空气边界的第二过渡而大幅减少,从而导致极少能量从解剖目标回到接收器。低返回等 同于边际数据。

用于隔离特定生理过程的常用技术涉及组合多普勒与自相关。自相关对时域波形 采样,且将第N脉冲与第N脉冲之后的时间周期相关,其中所述周期基于多普勒结果在所审 查的特定生理过程的预期速率上居中。高相关系数等同于对系统已锁定到特定生理过程上 的较大信心。外部定义的阈值通常用于确定适当相关且因此确定足够目标获取。

由于与呼吸相关联的强表面分量(通常在普通成人男性中是1cm胸腔壁位移),体 外技术可收集合理的肺数据,但不具有强表面分量的那些生理过程(例如,心脏活动)难以 通过多普勒来检测和测量。多普勒的另一限制是当一个以上生理过程以类似速率操作时通 常不能够区分与那些生理过程相关联的运动。举例来说,在遭受心动过缓的实验对象中,心 跳速率将接近呼吸速率且有时降低到低于呼吸速率,从而对于多普勒来说难以将两个过程 相互区分。

发明内容

一个或更多个方面涉及一种具有超宽带雷达的项圈。外壳含有传感器电子器件, 且发射天线和接收天线被定位成围绕项圈的周界而与外壳分开。项圈的第一实例包含第一 发射天线和第一接收天线。项圈的第二实例添加第二发射天线和第二接收天线。天线可被 定位成从包含颈动脉、颈静脉以及围绕食管和气管的肌肉的各种内部结构获得位置和移动 信息。

附图说明

图1是根据一个或更多个实施例的动物的颈部上的单基地雷达的说明性实例。

图2是根据一个或更多个实施例的动物的颈部上的双基地雷达的说明性实例。

图3A是根据一个或更多个实施例的动物的颈部上的多基地雷达的第一说明性实 例。图3B示出图3A的多基地雷达的信号路径。

图4A是根据一个或更多个实施例的动物的颈部上的多基地雷达的第二说明性实 例。图4B示出图4A的多基地雷达的信号路径

图5A示出根据一个或更多个实施例的动物的细颈部上的多基地雷达的说明性实 例。图5B示出图5A的多基地雷达的信号路径。

图6A和图6B是示出根据一个或更多个实施例的来自动物身上的UWB传感器的胸骨 位置的心跳和呼吸速率的曲线图。

图7A和图7B是示出来自UWB传感器的右颈动脉位置的心跳和呼吸速率的曲线图。

图8A和图8B是示出来自UWB传感器的右喉部位置的心跳和呼吸速率的曲线图。

图9A和图9B是示出来自UWB传感器的后颈部位置的心跳和呼吸速率的曲线图。

图10A和图10B是示出来自UWB传感器的右股部位置的心跳和呼吸速率的曲线图。

图11A和图11B是示出来自UWB传感器的右肩部位置的心跳和呼吸速率的曲线图。

图12示出UWB传感器的说明性实例。

具体实施方式

以下描述涉及用于从哺乳动物获得生理信息的超宽带(UWB)传感器的配置。具体 来说,本公开的方面与将UWB传感器用作医学雷达相关,其中UWB传感器使用极低功率的超 宽带(UWB)射频(RF)能量。在实践中,UWB医学雷达发射电磁能量的窄脉冲,其中窄脉冲传播 到身体中。随着能量进入身体,少量的入射能量被反射回到装置。反射是由于被照明的组织 与器官的介电性质的差异所致。所反射的能量接着使用专用信号处理算法予以接收和处理 以提取关于被照明的组织和器官的类型、位置、大小和运动的信息。应了解,被照明的组织 与器官之间的介电常数越大,电磁脉冲的反射(反向散射)越多。

举例来说,在颁予Tupin,Jr.等人的第7,725,150号美国专利和颁予Tupin,Jr.的 第8,463,361号美国专利中找到UWB医学雷达系统的实例,所述两个专利都被转让给 LifeWave,Inc.ofLosAltos,California,其全部内容以引用方式明确地并入本文中。

超宽带雷达由于UWB雷达固有的极精细的径向分辨率(<5mm)而克服关于多普勒雷 达所发现的限制中的一者,从而允许UWB传感器较容易基于不同生理过程在患者体内的独 特位置而隔离这些生理过程。传感器可使用传统范围扫描技术而聚焦在一个或更多个深 度,且如果传感器被配置为阵列,那么可应用基于波束导向和波束成形的其它焦点处理技 术。

用于监测动物健康的接触式UWB医学传感器相比于多普勒和体外监测具有若干显 著优点。UWB雷达不需要直接皮肤接触或偶联凝胶,从而仍允许UWB雷达通过维持与皮毛接 触而通过皮毛来收集有用的生理数据。因此,显著降低了与皮肤-空气界面相关联的大反射 损失。第二,假设电子器件被充分保护而免受环境影响(例如,被密封而不受雨水和潮湿的 影响或以其它方式防潮),则雷达可在潮湿或肮脏时操作。

举例来说,UWB雷达系统可放置在如图1所示的动物项圈上。图1示出动物颈部和动 物佩戴的项圈的横截面图。图1的UWB雷达系统包含位于外壳中的传感器电子器件101以及 天线103,其中天线103包含发射天线104和接收天线105。天线104和105可一起放置在单个 外壳103a中,或可被分开地容纳。将天线104和105容纳在一起的一个优点是每一天线所面 向的方向可相对于另一天线是固定的。

UWB雷达系统的这些组件可共同定位在单个位置处,或可如图1所示围绕项圈102 而放置,且通过电线、电缆、电路板(刚性或柔性)上的迹线或其它已知电连接技术而连接。 如果共同定位,那么天线104和105以及传感器电子器件101的组合的大小的实例可以是 7.4cm×2.3cm×1.8cm且重29g。

UWB雷达系统基于不同结构相对于周围结构或组织的不同介电常数而监测所述不 同结构的移动。这些结构之间的界面的位置改变由UWB雷达系统监测,且随后通过UWB雷达 信号的已知分析技术来分析。

本公开的方面涉及提供改进的信号以供分析的UWB雷达系统的配置。出于参考起 见,图1示出动物颈部108与皮肤109、气管110与周围肌肉111、112、食管113与周围肌肉114、 115、颈动脉116、117、颈静脉118、119、脊柱122以及各种其它肌肉(包含下肌群120、121和上 肌群123、124)。

在一个实例中,具有传感器电子器件101和天线103的UWB雷达系统可共同定位 (即,传感器电子器件101模块相对于颈部109从天线103径向地向外定位)而作为单基地雷 达结构,且将项圈最接近气管110相对于动物颈部108悬吊在最底部位置107处。

在另一实例中,如图1的配置所示,传感器电子器件101定位在颈部108的顶部处, 且天线103位于颈部108的侧上,也是作为单基地雷达结构。此处,通过发射天线104和接收 天线105放置得较接近颈动脉116和颈静脉118,来自发射天线104且返回到接收天线105的 波束可在位于图1所示的位置处,接着位于位置107处时遭遇较少辩证上不同的结构。辩证 上不同的结构的数目的此减少会减少来自那些不同结构的反向散射信号。

如图所描绘,项圈102可包含配重106,其中配重106可约为天线103的重量,平衡 UWB雷达系统,且试图将天线103维持在其围绕颈部108的侧放置。

替代配重106或除配重106之外,张紧器也可用于在项圈102上维持相对恒定的张 力以帮助将天线103定位在颈部108的侧上。

此外,因为较大动物具有较强壮的颈部肌肉(例如,肌肉123、124),所以在一些情 形下,这些肌肉可在脊柱122上方形成凹处125。传感器电子器件101的内部形状可以是凸形 以在肌群123和124所形成的凹形凹处中实现至少一些巢套。

通过如图1所示放置天线103和旁侧位置,可获得来自动物的颈动脉116和/或颈静 脉118的准确读数。取决于动物的类型,天线103可相对于颈部108和/或彼此成角度,以实现 相关结构的照明和/或从那些结构收集反向散射的信号。举例来说,为了仅集中在颈动脉 116上,接收天线105可移动得较接近发射天线104以大致上按照来自发射天线104计划的辐 射波束来接收较强的反向散射信号。或者,为了集中在颈动脉116以及围绕食管113的肌肉 114和115的移动上,接收天线105可移动得较远离发射天线104。此外,为了还包含来自围绕 气管110的肌肉111和112的移动的信号,接收天线105可移动得较远离发射天线104。在这些 实例中,可围绕气管110监测各种肌群,这是因为气管的软骨可不反射UWB脉冲,且软骨的移 动不可被直接检测到。

在跨越一定物种范围的许多应用中,UWB雷达传感器可放置在项圈或挽具内或放 置在项圈或挽具上,其中服装以及服装上或服装内的特定传感器放置的选择受以下各者驱 动:所要医学数据;对将传感器定位在需要获得所要数据的关键主要解剖结构和替代次要 解剖结构附近的需要;以及对将传感器紧固到动物以使得在正常活动期间不可能被去除或 移除的需要。此外,传感器及其天线的形状可被修改以利用解剖学来辅助放置且维持位置。

结果的实际信号处理和显示不必与传感器共同定位,且实际上,远程处理和显示 可以是高度理想的。数据可在本地使用嵌入式处理器(例如,微控制器或离散信号处理器) 来处理(部分地或完全地),或使用常规无线传送系统(传感器电子器件101中的发射器,用 于在例如Wi-Fi连接上将信号发射到接收器)而无线传送到另一处理平台(专用基站、智能 电话、平板、PC或云)。显示可以是内置到基站中的面板上的数字读出,或利用任何数目个消 费型电子器件的GUI能力。

在上文所描述的各种限制中,项圈102允许收集基本心肺数据,而不需要直接处于 心肺上方。项圈以其UWB雷达系统主要从颈部中的颈动脉收集数据,并且收集与喉部、气管 和食管的运动相关联的生理数据。来自这些结构的数据基于接收信号的分析(包含信号的 频率分量的标识、那些频率分量的量值以及那些信号如何随时间改变)而实现消耗(即,食 物和水)、呕吐和反刍的监测,还实现窒息与发声(例如,吠叫)或涉及到喉部和气管的其它 过程的检测。其它传感器技术可被添加到组装件以支持数据融合,从而实现改进的准确性、 可靠性和噪声减少。

此外,额外配重(例如,动物的标签或其它项圈附件)可设置在位置107处,以提供 可进一步辅助对准传感器电子器件101和天线103的重量。

图2示出传感器电子器件201和天线的另一配置。在图2中,发射天线204位于颈部 108的第一侧上,且接收天线205位于颈部108的对称相对侧上。此处,天线204和205可对称 分布在颈部108的周界周围,以在项圈202上维持均匀的重量分布。此配置的一个实例将使 传感器电子器件101处于棘突125上方的凹陷部中(参见图1和图2),从而实现传感器电子器 件201的容易且一致的放置。不同于许多动物具有垂肉且对任何物体敏感的前颈部,此位置 通常具有较少脂肪组织,较少松弛皮肤,且在特定物种或品种内具有较少解剖变化。

图2中发射天线204与接收天线205分开的配置通常被称为双基地雷达架构。在最 小分开状况下,TX天线和RX天线两者都可沿着脊柱而定位,而在极限情况下,TX天线和RX天 线可位于喉部的任一侧上。

在图2中,接收天线205可从颈部108内的一些结构接收反向散射。对于相对于周围 结构具有强介电差异的结构来说,反向散射信号的振幅可支配所接收的信号收集。然而,对 于相对于周围结构具有较不显著的介电差异的结构来说,来自这些较不显著的介电差异的 所得反向散射较弱。因此,当试图在不同结构的介电常数相对相互接近的情况下监测这些 结构相对于彼此的移动时,监测反向散射信号较困难。在此情形下,在接收天线205通常面 向发射天线204的情况下监测信号修改(信号放大、衰减、偏振、延迟或提前等)是优选的。

图2的上述双基地配置可扩展为多基地配置,其中重量、产品成本和功率消耗相应 地增大。如图3A所示,传感器可包含两个雷达信道303和306,其各自由TX和RX对(分别是 304/305和307/308)组成,其中一个雷达信道检查颈部的右侧,且一个雷达信号检查左侧。

此配置利用颈部的对称性以在减小普通噪声的同时改进信号接收。可添加较多雷 达信道以实现额外性能改进。

如图3B所示,雷达信道1303被示出在图3A的左侧上,且雷达信道2306被示出在 图3A的右侧上。来自发射天线304的雷达信道1303的反向散射信号309进入且接着穿过颈 部108的侧返回到接收天线305。类似地,来自发射天线307的雷达信道2306的反向散射信 号310进入且接着穿过颈部108的侧306返回到接收天线308。另外,接收天线308接收最初从 发射天线304发射的衰减信号311(从雷达信道1到雷达信道2)。同样,接收天线305接收最初 从发射天线307发射的衰减信号312(从雷达信道2到雷达信道1)。

为了允许衰减信号311和312被传感器电子器件301接收和使用,用于在多基地UWB 雷达系统中控制UWB脉冲的发射的共同定时信号用于雷达信道1和雷达信道2中。举例来说, 当发射天线304已完成发射时,接收天线305和接收天线308两者都可在接收颈部108中的各 种结构的组合所散射和/或修改的信号时是活动的(根据同一定时信号或在时间上调整的 定时信号)。或者,发射天线304和发射天线307可根据同一定时信号或在时间上调整的定时 信号而同时发射,其中接收天线305或接收天线308中的一者也是活动的(且同样响应于同 一定时信号或在时间上调整的定时信号)。最终,发射天线304和发射天线307都可同时发 射,且接收天线305和接收天线308都可同时接收信号,其中所有操作都是通过同一定时信 号或在时间上调整的定时信号来协调。将同一定时信号或在时间上调整的定时信号用于传 感器电子器件301中的目的是给雷达信道1303和雷达信道2306的操作提供时间相干性。

图4A示出与图3A的结构类似的结构,其中传感器电子器件401控制雷达信道1403 (具有发射天线404和接收天线405)和较大信道2406(具有发射天线407和接收天线408)。 此处,雷达信道2406的发射天线和接收天线的位置相对于发射天线404和接收天线405的 位置翻转。虽然雷达信道1的反向散射信号409类似于图3B所示的反向散射信号,但相比于 图3B的反向散射信号310(其较向下反射),反向散射信号410较向上反射。另外,从发射天线 404到接收天线408的衰减信号411通常比衰减信号311水平。类似地,从发射天线4072到接 收天线415的衰减信号412也通常比衰减信号412水平。

如同图3A的传感器电子器件301,图4A的传感器电子器件401还可使用时间上相干 的定时信号以实现图4A的发射和接收天线组件的多基地操作。

图5A示出与图4A的配置类似的配置,但其中动物具有较细颈部108。图5A示出项圈 502、传感器电子器件501(具有提供雷达信道1503和雷达信道2506之间的时间相干性的 共同定时参考)、发射天线504和507、接收天线505和508。图5B示出反向散射信号509和510 以及衰减信号511和512。

在所有状况(包含单基地、双基地和多基地)下,每一雷达信道的成对TX和RX天线 的位置、定向和天线特性可被设计成允许TX和RX天线视轴收敛在感兴趣的解剖结构上,同 时在感兴趣的结构处维持足够的波束宽度。

如上文所描述,可整合配重以将项圈旋转的可能性减到最少,同时可添加张紧装 置(弹簧或夹子或可弹性变形的材料)以对动物颈部108维持恒定压力,从而将传感器/皮肤 界面处的运动所导致的噪声减到最少。另外,重要的是注意到,因为电子器件可经由电缆或 柔性电路板而连接到天线,所以传感器电子器件和天线不需要共同定位。这些连接技术中 的任一者都可嵌入到项圈自身中,只要连接介质相对均质以将RF反射减到最少即可。

挽具(例如,经过修改的行走挽具)具有以下优点:允许一个或更多个雷达检查感 兴趣的各种解剖区域或通过在特定器官上隔离而实现更复杂的信号处理。举例来说,如果 UWB雷达传感器具有紧接于心脏的至少一个信道,那么可获得先进的心脏生物测量信息,包 含心搏量、心输出量,以及血压改变。类似地,如果UWB雷达传感器具有紧接于肺的左右主支 气管淋巴结的一个信道,那么系统可检查不对称的呼吸样式。

UWB雷达不限于依靠躯干来收集心肺数据,这是因为在动物身上可存在许多可尤 其用来获得心脏数据的替代位置。举例来说,可通过将UWB传感器定位在颈动脉附近以利用 整个心跳周期中动脉的半径的扩张和收缩来收集良好质量的心脏数据。此外,已示出将传 感器定位在颈部上以提供合理的且可量化的呼吸信息。

已研究各种似猪动物模型(重量介于30kg与50kg之间)以开发新的人类心肺监测 系统。在这些研究中,UWB雷达传感器紧接于心脏而放置到动物胸骨的左侧,且与其它参考 监测器并列地收集心肺数据。来自UWB雷达传感器的数据通过专属的信号处理算法来处理, 且结果与来自参考监测器的数据相关以确定雷达传感器的功效。UWB传感器证明了以下能 力:测量心跳速率和呼吸速率、检测心搏量改变、测量CPR按压,且跨越各种心脏条件确定循 环系统的状态。

最近,已研究传感器使用重量不足10kg的犬作为试验对象而测量小动物中的心肺 速率的能力。此能力与先前证明且上文所描述的能力一起实现各种动物监测应用。在试验 期间,人工观测心跳速率为约65BPM,而人工观测呼吸速率为约20BPM。

在第一试验中,将UWB雷达传感器放置在动物胸腔的左侧,在动物俯卧时,大致上 与心脏齐平。如图6A和图6B所示,通过FFT计算的心跳速率和呼吸速率是容易辨别的,且与 人工测量匹配。

在第二试验中,将UWB雷达传感器放置在动物颈部的右侧,在颈动脉上方,其中传 感器的轴线平行于动脉的纵轴。如图7A和图7B所示,通过FFT计算的心跳速率和呼吸速率是 容易辨别的,且与人工测量匹配。

在第三试验中,将UWB雷达传感器放置在动物颈部的右侧,紧靠喉部,其中传感器 的轴线平行于气管的纵轴。如图8A和图8B所示,通过FFT计算的心跳速率和呼吸速率是容易 辨别的,且与人工测量匹配。此位置特别令人感兴趣,这是因为此位置还提供喉部、气管和 食管的视图。

在第四试验中,将UWB雷达传感器放置在动物的后颈部,紧靠在棘突上方,其中传 感器的轴线平行于脊柱的纵轴。如图9A和图9B所示,通过FFT计算的心跳速率和呼吸速率是 容易辨别的,且与人工测量匹配。

在第五试验中,将UWB雷达传感器放置在右后腿上,紧靠在右股动脉上方和骨盆关 节下方,其中传感器的轴线平行于动脉的纵轴。如图10A和图10B所示,通过FFT计算的呼吸 速率是容易辨别的,且与人工测量匹配。心跳速率是较不容易辨别的且因其它噪声源而稍 微模糊。

在第六试验中,将UWB雷达传感器放置在右前腿上,紧靠在右辅助动脉上方和肩关 节下方,其中传感器的轴线平行于动脉的纵轴。如图11A和图11B所示,通过FFT计算的呼吸 速率是容易辨别的,且与人工测量匹配。心跳速率是较不容易辨别的且因其它噪声源而稍 微模糊。

总结以UWB医学雷达对似犬模型进行的这些基本心肺试验,从UWB雷达数据计算的 心跳速率和呼吸速率通常是可辨别的且与人工测量匹配。在若干情形下,心跳速率相比于 呼吸速率是较不容易辨别的,且因其它噪声源(潜在地包含来自动物以及将传感器保持在 适当位置的研究员的肌肉痉挛)而稍微模糊。类似地,在若干情形下,呼吸速率在2到3BPM上 略微变化,这最可能是因FFT的分辨率(~0.732BPM)以及呼吸相对于其自主分量的预期可 变性(被观测为轻微屏气)所致。令人感兴趣的是注意到,心跳信号的强度通常比呼吸信号 的强度低10到13dB,而颈部和躯干位置以最小的噪声产生较容易辨别的心肺数据。

图12示出此项技术中已知的UWB雷达系统的常规配置。第7,725,150号美国专利的 UWB雷达系统以引用方式并入本文中。控制器1201产生定时和控制信号1201a、1201b、 1201c、1201d和1201e以对系统的剩余部分进行同步和管理。控制器1201还接受来自其它子 系统的内部反馈信号,接受来自操作员的外部控制输入,且具有将数据输出提供给操作员 或医学记录系统的能力。控制器可使用集成处理器和关联电路予以实现。

基于来自控制器1201的定时和控制信号1201a,脉冲重复频率(PRF)产生器1202产 生基带脉冲串,其中基带脉冲串由发射器1203使用,且在范围延迟Δt1205之后,由接收器 1206使用。或者,发射器1203和接收器1206两者都可从脉冲重复频率产生器1202接收经延 迟的信号。此外,应用到发射器1203和接收器1206中的任一者或两者的延迟可以是固定的 或可变的。

因为脉冲串通用于发射器和接收器子系统两者且允许它们同步地操作,所以系统 是时间相干雷达系统。在实践中,PRF产生器中或与PRF产生器相关联的压控振荡器(VCO)供 应脉冲串,其中压控振荡器(VCO)以标称的但仅为示范性的2MHz的输出频率操作。随机化脉 冲间抖动可通过将噪声信号从噪声信号源(未示出)注入到VCO控制端口中而添加到产生器 2的输出。随机抖动导致频谱扩展以减小干扰其它电子装置的可能性,且为每单元提供独特 发射编码样式,从而允许多个单元紧密接近地操作,而大致上没有相互干扰的顾虑。

发射器1203基于来自PRF产生器1202的脉冲串而产生一系列低电压、短持续时间 的脉冲1203a(在一个实施例中,小于200ps)。在实践中,区别具有极快上升边缘和下降边缘 的脉冲串的边缘会产生亚纳秒脉冲。通过发射器与天线的组合,短持续时间的脉冲根据FCC R&O02-48而被转换为在RF/微波频带中居中的超宽带频谱信号。

在一个实施例中,发射器1203和接收器1206共享共同天线1204。在另一实施例中, 天线被分为发射天线1204a和接收天线1204b。对于发射器来说,天线1204a将短脉冲从发射 器1203耦合到环境,如A处所说明,耦合到患者。随后,从环境接收反射B且将其馈送到接收 器1206。可使用各种天线配置,包含:市售的喇叭和扁平谐振器、简单磁偶极,以及直径被选 择为优化UWB信号的发射和接收的磁偶极或“环形”天线。举例来说,结合以1.5Ghz到3.4Ghz 的10dB带宽操作的UWB系统而使用由24号实心铜线制成的4cm的直径的环形天线。

基于来自控制器1201的定时和控制信号1201b以及源自PRF产生器1202的脉冲,范 围延迟Δt1205产生PRF定时信号的经延迟的版本。范围延迟的输出触发接收器1206中的 随后描述的采样与保持电路,其中延迟值被选择为补偿系统内的固定电延迟,且将数据收 集集中在源自身体内的特定深度的那些反射。范围延迟是极其灵活的,且结合控制器,可产 生大范围的延迟特性曲线以适应各种信号处理要求。

存在用于收集医学数据的两种延迟模式:范围选通模式和范围查找器模式。在范 围选通模式中,对应于将被提取生理数据的区域的身体内的深度是固定的,且在一个实例 中,在数秒的周期内在所述深度收集大量样本,从而提供关于身体内的相对改变的信息。接 着,可改变深度且重复过程。与此对比,当在范围查找器模式中操作时,在感兴趣的有限范 围内重复地扫描深度,其中在每一深度收集样本。范围选通模式在感兴趣的深度提供详细 信息,而范围查找器模式用于在一定深度范围内快速收集数据。范围延迟电路支持范围选 通模式和范围查找器模式两者。在实践中,范围延迟电路可使用12位数/模转换器(DAC)、用 于实现功能的运算放大器以及单稳多谐振荡器予以实现。单稳多谐振荡器(作为一个实例, 可使用LMC555)响应于在其两个控制输入(触发和延缓)上接收的信号而产生所发射的脉冲 串的经延迟的版本。来自PRF产生器1202的脉冲串是触发信号,且导致单稳多谐振荡器针对 脉冲串中的每一脉冲而起始单个脉冲循环。延缓电压确定脉冲的周期。通过改变延缓电压, 可产生不同脉冲周期,且因此可产生不同延迟值。延迟的量是通过模拟控制和数字控制两 者来设置。模拟控制设置最小延迟值以及允许控制范围,而数字控制用于动态地调整延迟 控制的实际延迟值、延迟扫描速率以及分辨率。

在实践中,将对应于所要延迟的12位数据值(Datax)从控制器1201发送到DAC。DAC 产生电压Vx,其中Vx=4.096伏×(Datax/4096)。

DAC输出电压和DC电压在求和结中相加在一起,且总和被放大且馈送到单稳触发 器的延缓控制输入。DC电压电平结合放大器增益而设置最小延迟值和允许控制范围。DC电 压电平和增益设置两者是通过电位计的人工调整来控制。5ns的延迟范围已被证实在心肺 应用中产生良好定量数据,且对应于到身体中的约12cm的深度范围。高达10ns的其它延迟 范围值已被示出为产生可用数据集。

接收器1206在模拟域中处理在线路1204b1上从天线1204b接收的原始反射以优化 感兴趣的信号。对于心肺数据来说,这包含抑制高强度静态返回数据且放大运动伪影。接收 器1206可基于双信道平衡接收器架构,其中发射器脉冲经由RF而从发射器1203的输出电容 性耦合到两个接收信道中。分离器和天线1204连接或以其它方式耦合到一个信道。平衡接 收器架构提供高度的共模抑制以及差分增益。共模抑制将大量衰减提供给两个信道所共有 的信号,因此将发射信号对所要接收信号的干扰减到最少。此架构中固有的差分增益放大 任一信道所特有的信号,因此,所述信道所特有的接收信号被放大。

两个信道都可使用超快采样与保持(S/H)电路,每一者是由经延迟的脉波串触发, 而经延迟的脉波串是由脉冲产生器使用来自图12的范围延迟电路Δt5的在线路上的经延 迟的脉冲串而产生的。活动采样窗在一个实例中被设置为约320ps,且可容易通过选择性地 改变单个无源组件的值来修改。两个S/H电路的输出在积分器元件中在多个样本上进行积 分以改进信噪比。经积分的样本馈送仪表放大器的反相输入和非反相输入,从而衰减发射 信号且放大接收信号。

如图12所说明,A/D转换器1207(ADC)由控制器1201通过控制线路1201c控制。控制 器基于操作模式来设置采样过程的采样速率、采样分辨率和/或开始/停止定时。ADC将来自 接收器1206的增强型模拟运动反射数字化,从而将增强型反射能量转化为一系列离散数字 值。作为范围选通模式中的一个实例,可按16位/样本使用16,000样本/秒。

来自A/D转换器1207的数字化信号接着被处理以依据图12在信号处理器1208中提 取相关生理信息。信号处理块极其灵活,且如上文所提及,可适应广泛各种算法以支持不同 医学应用。此外,算法可使用并行、串行或混合并行/串行架构予以实施。特定架构的选择被 留给所属领域的技术人员,且将取决于应用和其它系统约束。控制器通过控制路径1201d来 管理信号处理操作。

所得生理数据显示在用户界面(未示出)上。这可包含一个或更多个感兴趣的深度 的振幅对时间的记录曲线、一个或更多个感兴趣的深度的功率谱密度、一定深度范围的时 域和频域直方图、心跳速率和/或呼吸速率的数值,以及所显示的数据的关联置信因数,如 随后所描述。图12的控制器1201通过控制路径1201e而将来自信号处理器的数据转换为操 作员友好格式,以供显示在用户界面上。

本文标签: 动物卫生健康uwb